
IRN QARESS

QuAntitative Resilience-based managEment and Sustainability for Social-ecological Systems

kick-off MPL, December, 2024

Agenda

Mondey December 2, 2024: Salle des actes MEHSUB

- + 09.00-09.00 Introduction of IRN QARESS II. Dayer, CNRS. CEE-MJ
- DE 10-10.00 Q, Grafton (Crawford Institute of Public Policy, AUG) (video) Realizing Realizing for decision making
- D5.00-10.00 L Down (CNR), CELMI Noncommunic resilience based management and stability.
- + 10.00 10.32 C. Sinel (COAR WUR, NC): Food systems neillense
- = 13-38 11-80 Collee Break
- 11.00 11.33 R. Vasc (XXV Unix. Kiel, Germany): Ecological-economic modeling to support
 a scatamability transformation of the western Bahic Faharies socio-ecological system.
- 11.50 12.00 M. Elsze (EIAT, Cameroon): Agenfanestry for the resilience of favring sesteres in Africa.
- 12:50-12:30: V. Tetat (Epole Nationale Polytechnique Yasunde, Cameroon): Bioeconomic resilience of Savamas
- 12 35 58 50 Lunch, Jandin O'hiver MSHSUD
- 34.50 54.30: G. Zaccoar (HEC Montreal, Canada) (visio): Dynamic Games Played over Event Trees with Coupling Constraints
- 34.50 15.03 C. Seisal (DIX, CEM). Income sharing for collective goods with uncertain benefits
- 15:86 35:30; P. Countele (CDM, INRAE, Prance); Bio-economic modelling for the operational management of biological invasions.
- 15.30 16.00 Coffee Brack
- a 15.00-15.32 Discussion

18:30: Symposium Gineer within the Initiatual Center of Montpellier: Brownie du Theche (33 64 Victor Hugo, 34000 Montpellier) <u>https://www.acc.acc.org/13/07/64/04/647867</u>

- Tuesday, December 3, 2024: Safe des actes H54500
 - 09:00 9.80 C. Gerling (University: Cattbut, Gernary): Cost-effective biodiversity conservation under climate change.
 - 00:30 50:00: LM. Fromentin (LMR MARGEC, France) (visio): Vulneratilities us. resilience in international blacks tuna management.
 - 10:00 10:30-3. Sabatier (MRAS, France) Treasmit resilient diversilient agra ecosystems.
 - + 10.35-11:00 Coffee Brank
 - = 11:00 12-30: Brainstorming by groups:
 - (a) Role of cooperation for realisecs-based management: arimetice Noolas Gaerou (CNRS, CERM)
 - (b) Risk version orbits management: antimation Lac Opern (CVRS, CEEM)
 - e 12:30 54:00 Lunch Jurdin O'hiver MSH
 - 14:00 15:50: Rei0tublen Brainstorming by groups
 - 15:30 55:00: Coffee Break
 - a 16:00 Perspectives and closing

International Research Network (IRN) CNRS international cooperation tools

International Emerging Actions (IEA)	International Research Networks (IRN)	International Research Projects (IRP)	International Research Laboratories (IRL)	
Bottom-up exploration tool	Strengthening a collaboration		Enlightening emblematic actions decided at a strategic level with a strong	
Building a capacity to develop our strategic orientations	Simplifying internation	nal agreement processes	local presence	

Rugby: Hansen praises All Blacks' resilience

Perspective data in the case of the case o

The rising popularity of resilience contrasts with a lack of clarity over the concept and its implementation

Derissen, Quaas, Baumgärtner (2011); Béné, Godfrey-Wood et al. (2012); Downes et al. (2013); Villasante et al.(2013); Grafton - Little (2017); Bene-Doyen (2018), ...

- No generic metrics across disciplines
- Bad resilience
- Resilience management ?
- Resilience with respect to what ?

^{nature} sustainability

PERSPECTIVE https://doi.org/10.1038/s41893-019-0376-1

Realizing resilience for decision-making

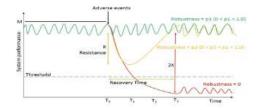
R. Quentin Grafton^{®12+}, Luc Doyen^{®23}, Christophe Béné^{®4}, Edoardo Borgomeo^{®5}, Kate Brooks^{®6}, Long Chu^{®1}, Graeme S. Cumming^{®7}, John Dixon^{®1}, Stephen Dovers^{®8}, Dustin Garrick^{®9}, Ariella Helfgott^s, Qiang Jiang^{®10}, Pamela Katic^{®11}, Tom Kompas^{®12}, L. Richard Little^{®13}, Nathanial Matthews^{®14}, Claudia Ringler^{®16}, Dale Squires^{®16}, Stein Ivar Steinshamn^{®17}, Sebastián Villasante^{®18}, Sarah Wheeler^{®19}, John Williams¹ and Paul R. Wyrwoll^{®1}

The 3 R's

Grafton, Doyen, Béné et al. 2019

System characteristics to measure resilience

Recovery Time: Holling (1973), Pimm (1984),


time to achieve a desired state following adverse events

2 Resistance: Harrison (1979)

magnitude of adverse events that can be coped with

Solution & Doyle (2002) 8 Robustness: reliability, Carlson & Doyle (2002)

the probability of a system to stay in a desired state facing adverse events

< **₽** ► ୭ < ભ

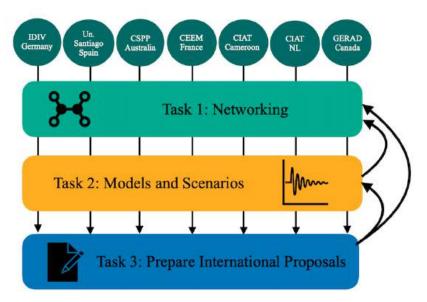
From the 3R's to the 7S's (steps) of resilience heuristic

Table 1 Three management contexts using a socio-economic resilience heuristic							
Management steps	Resilience for surface water flows	Resilience for emergency management of communities	Resilience for marine wild-capture fisheries				
System definition, boundaries and drivers	Water catchment. Catchment dynamics are affected by both human activity and by natural fluctuations.	Small community (<2-3,000) well- defined spatially. Residents' activities include farming and timber extraction, and social interactions.	Multi-species fishery. Dynamics of the system depend on natural mechanisms (for example, growth and recruitment), fishing activities and environmental drivers.				
Stakeholders	Farmers, tourists, water agencies and NGOs.	Community residents.	Fishers, consumers, regulating agencies and NGOs.				
Metrics identification	Water guality and guantity, the net economic return of water users, and environmental guality scores.	Employment, production, and consumption/food security, and accessstem services.	Biomass estimates and indicators of fishing production and profitability.				
Viability goals and metrics	Positive net returns for farmers, guaranteed stream flows, cultural needs and safe thresholds.	Human safety, maintaining infrastructures, water and electricity supply, and economic activities.	Stock thresholds, such as precautionary limits, and also minimum profit levels for the harvesting sector.				
Advorse events	Droughts or floods.	Wildfires.	Recruitment failures.				
Quantification of the three Rs	Resistance: measures of ecosystem health (species diversity) or habitat functionality (vegetation cover). Recovery: reacovery time for population of key species. Robustness: probability of 'normal' water influxes.	Resistance: safety margins for multiple metrics (environmental, economic, heath and social). Recovery: magnitude, type and scale of resources post-disaster. Robustness: probability of not having wildfires.	Resistance: population viability analysis of key fish stocks. Recovery: responses to annual recruitment variability, regime shift, climate change and socio-economic shocks. Robustness: probability of fish stocks, catches er fisher profits not failing below pre-defined thresholds.				
Resilience-management actions and benefits	Construction of infrastructure for inter-basin transfers, storage (surface and aquifer), water extraction and policies that affect iand-use and vegetation type.	For wildfire risk management, prescribed burning and fuel treatment.	Modern fisheries management includes active adaptive management as a response to large, and frequently unpredictable, adverse events and also uncertainty over fisher responses.				

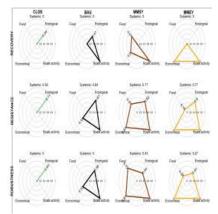
In line with 3R's and 7S's framework

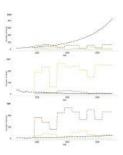
- Advance quantitative resilience-based management and model-based scenarios for SES
- Focus on forest, farming and fisheries SES
- Case studies in Australia, Europe, and Africa; Comparative analysis across case studies
- Role of cooperation and diversification ?

International and interdisciplinary



QARESS Tasks

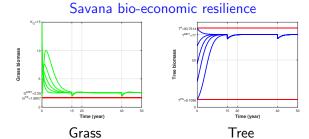

2024	2025	2026	2027	2028
Symposium Montpellier	Symposium Amsterdam	Conference Canada	Conference Canberra	Summer School
	Symposium	Symposium Symposium	Symposium Symposium Conference	Symposium Symposium Conference Conference



Similar projects: Applying the 3Rs in French Guiana

Cuilleret, Doyen, Gomes et al. 2022, Economic Analysis and Policy

<**₽** ► ୭९୯


ERICA project in Cameroon

Yatat, Doyen, Tewa et al., Env. Model. Assess. (2024)

