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Climate change & the “6th mass extinction”

• Global biodiversity loss: increasing rates of extinction – “6th mass extinction“

• Causes of biodiversity loss (IPBES 2019, Dasgupta 2021)

• Land use change & agricultural intensification

• Climate change → becomes increasingly important

• and others…

→ Particularly challenging in agricultural landscapes

• Contributions by economists: Species conservation – the static perspective

• Choosing cost-effective conservation sites

• Choosing cost-effective conservation measures

→ Cost-effectiveness: maximising conservation outcome for given costs
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Conservation measures

• Extensive land use

• e.g. restrictions on the timing and

number of harvests on a meadow



Climate change and biodiv conservation: the dynamic 
perspective
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Temporal dimension
• Ecological aspects: phenological adaptations

= adaptation of  timing of  life cycle stages

time

Spatial dimension
• Ecological aspects: range shifts

• Species’ ranges shift poleward/ uphill

Images: Johannes Leins



Climate change and biodiv conservation: the dynamic 
perspective
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Temporal dimension
• Ecological aspects: phenological adaptations

= adaptation of  timing of  life cycle stages

→ Changes in effectiveness of measures

• Impact of  climate change on conservation costs? 
• Costs of  measure depend on timing of  harvest 

relative to profit-maximizing timing

• Climate change advances profit-maximizing timing

→ Relative changes in costs of different 

measures

Spatial dimension
• Ecological aspects: range shifts

• Species’ ranges shift poleward/ uphill

→ Spatially heterogeneous changes in 

benefits

• Changes in opportunity costs
• Some sites become more productive, others less

→ Spatially heterogeneous changes in costs

Images: Johannes Leins → Cost-effectiveness of  conservation sites and measures may change



Climate-ecological-economic modelling

Set-up

• Case study: large marsh grasshopper (LMG) in Schleswig-Holstein

• Spatial scale
• 12km * 12km climate cells

• 250m * 250m grassland cells

• Conservation measures
• Restrict timing and frequency of  land use

• Defined “phenologically”

• Determine cost-effective spatio-temporal allocation of  conservation 
measures

• Compare two periods:
• 2020-2039

• 2060-2079 5

Images: Daniel Konn-Vetterlein, mapchart.net



A basic climate-ecological-economic model
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Agri-economic cost 

assessment
Ecological model

Vegetation 

model

Climate model

Harvest 

module

Optimisation

Result: ecological benefit for given 

cost constraint for each period

Temperature, soil
moisture

• Daily values

• For each period

• RCP4.5

Vegetation (grass) 
growth

• Simplified version of  
model developed by 
Schippers and 
Kropff (2001) 

• For each grassland 
cell

• Depends on climatic 
conditions and 
productivity

Images: Johannes Leins, Daniel Konn-Vetterlein, Charlotte Gerling, https://freepngimg.com/png/4787-grass-png-image-green-grass-png-picture

Yield-maximising
timing of mowing

• For each grassland 
cell

• Depends on climatic 
conditions and 
productivity

• Considers extreme 
events: inundations €



A basic climate-ecological-economic model
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Agri-economic cost 

assessment
Ecological model

Vegetation 

model

Climate model

Harvest 

module

Optimisation

Result: ecological benefit for given 

cost constraint for each period

Images: Johannes Leins, Daniel Konn-Vetterlein, Charlotte Gerling, https://freepngimg.com/png/4787-grass-png-image-green-grass-png-picture

1) Profit-maximising
timing of mowing

2) Opportunity costs
of conservation
measures

• For each grassland 
cell

• Depends on climatic 
conditions and 
productivity

LMG population

• For each grassland 
cell

• Impact of  grassland 
use and climatic 
conditions

€
Spatio-temporal 
allocation of  
conservation 
measures

• For each period

• According to benefit-
cost ratio

1) Phenological 
measure remains 
cost-effective

2) Spatial shifts



Analysis of  policy instruments

• Analysis of policy instruments

• “Benevolent dictator“ assumed in conservation planning rarely exists in reality
→ which policy instruments can be used to incentivise or implement conservation?

• Are they still suitable under climate change?

• Agri-environment schemes

• Land purchase

• Instrument choice
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Designing cost-effective agri-environment schemes under 
climate change

Cost-effective AES under recent (2000-2004) and future (2075-2079) climatic conditions

Key methodological changes

• Ecological model: 

• Impact of land use on 8 bird species (Wätzold et al. 2016)

• Impact of climate change: phenological adaptations

• Changes in timing of egg deposition

• Simulation and optimisation (based on Sturm et al. (2018))

• Determine cost-effective conservation measures and payments

9
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Designing cost-effective agri-environment schemes under 
climate change

Cost-effective AES under recent (2000-2004) and future (2075-2079) climatic conditions

Key methodological changes

• Ecological model: 

• Impact of land use on 8 bird species (Wätzold et al. 2016)

• Impact of climate change: phenological adaptations

• Changes in timing of egg deposition

• Simulation and optimisation (based on Sturm et al. (2018))

• Determine cost-effective conservation measures and payments

Results: Yes- the cost-effective AES changes!

• Different measure is chosen (RCP8.5)

• Reasons

• Higher ecological benefit, less intensive land use

• Extreme events (inundations) drive costs

→ Relative costs of the measures differ between the two periods 10
Image: Wikipedia



Land purchase: sale vs. no sale

General context

• Key trade-off: habitat permanence vs. spatial flexibility

• Land purchase: 

• High permanence

• Increase flexibility by allowing for sale?

→ Compare two policy scenarios: ‘sale‘ vs. ‘no sale‘

Key research questions

1) How does allowing for sale influence the conservation outcome 
under climate change?

2) How much habitat turnover do we have under the ‘sale’ and ‘no 
sale’ policies?

11

Model set-up

• Generic landscape with altitude
gradient

• Habitat suitability for 3 habitat types
based on elevation

• Climate change causes spatial shifts
(„uphill“)



Land purchase: sale vs. no sale

General context

• Key trade-off: habitat permanence vs. spatial flexibility

• Land purchase: 

• High permanence

• Increase flexibility by allowing for sale?

→ Compare two policy scenarios: ‘sale‘ vs. ‘no sale‘

Key research questions

1) How does allowing for sale influence the conservation outcome 
under climate change?

2) How much habitat turnover do we have under the ‘sale’ and ‘no 
sale’ policies?
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Model set-up

• Generic landscape with altitude
gradient

• Habitat suitability for 3 habitat types
based on elevation

• Climate change causes spatial shifts
(„uphill“)

expands shifts shrinks



Land purchase: sale vs. no sale

Key results

1) How does allowing for sale influence the 
conservation outcome under climate change?

→ Role of  spatial flexibility (improves 
outcome esp. for most threatened habitat 
type)

2) How much habitat turnover do we have 
under the ‘sale’ and ‘no sale’ policies?

• Habitat turnover even in a static reserve network

• Only small differences (‘sale’ vs. ‘no sale’) for 
most threatened habitat type

→ Role of  permanence (important for most 
threatened habitat type; decreases for others)
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a) ‘No sale‘ – low funding b) ‘Sale‘ – low funding
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Land purchase: sale vs. no sale

Key results

1) How does allowing for sale influence the 
conservation outcome under climate change?

→ Role of  spatial flexibility (improves 
outcome esp. for most threatened habitat 
type)

2) How much habitat turnover do we have 
under the ‘sale’ and ‘no sale’ policies?

• Habitat turnover even in a static reserve network

• Only small differences (‘sale’ vs. ‘no sale’) for 
most threatened habitat type

→ Role of  permanence (important for most 
threatened habitat type; decreases for others)
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Trade-off

• ‘Sale’ mainly benefits habitat types that 
become increasingly threatened

• ‘No sale’ mainly benefits permanence of  
habitat types that expand



Policy instrument choice

Compare the cost-effectiveness of…

• Land purchase: 

high management flexibility, low spatial flexibility

• Conservation contracts: 

medium management and spatial flexibility

Key scenario analysis

• Conservation agency has limited agricultural knowledge → producer surplus (farmers)

• no profit/ low profit/ full profit 
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Policy instrument choice: model logic
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Policy instrument choice: key results

• Base case: higher ecological benefit for conservation 
contracts
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• But: full profit assumption reverses ranking!

→ Degree to which the conservation agency is able to capture farmers’ profit has a key 

influence on the evaluation of  the policy instruments



Conclusion

• Consider the impact of climate change on species and conservation costs

• Policy instruments may have to be adapted

• Spatial flexibility

• Management flexibility

• Interdisciplinary research to leverage complementary expertise:

• Ecologists: analyse impacts of climate change on ecosystems, species, communities…

• Economists: analyse impacts of climate change on costs and appropriate policy context
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Overview of  publications
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Agri-environment schemes

Land purchase

Policy comparison

Basic model
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